Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 169-177, 2024.
Article in Chinese | WPRIM | ID: wpr-1006509

ABSTRACT

Objective@#To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts (HGFs) and to provide experimental evidence for surface modification of implant abutments.@*Methods@#The samples were divided into an NC group (negative control, no other treatment on a smooth surface), an NM-1 group (nanomesh-1, electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage), and an NM-2 group (nanomesh-2, electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage). The surface morphologies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy (SEM). The surface hydrophilicities of the samples were measured with a contact angle measuring instrument. The proliferation of HGFs on the different samples were evaluated with CCK-8, and the expression of adhesion-related genes, including collagen Ⅰ (COL1A1), collagen Ⅲ (COL3A1), fibronectin 1 (FN1), focal adhesion kinase (FAK), vinculin (VCL), integrin α2 (ITGA2), and integrin β1 (ITGB1), on the different samples was measured with qRT-PCR. The expression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy (CLSM) after immunofluorescent staining. Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.@*Results@#SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups, with grid diameters of approximately 30 nm for the NM-1 group and approximately 150 nm for the NM-2 group. Compared with that of the NC group, the water contact angles of the NM-1 group and NM-2 groups were significantly lower (P<0.000 1). Cell proliferation in the NM-1 group was significantly greater than that in the NC group (P<0.01). Moreover, there was no significant difference in the water contact angles or cell proliferation between the NM-1 group and the NM-2 group. SEM revealed that HGFs were adhered well to the surfaces of all samples, while the HGFs in the NM-1 and NM-2 groups showed more extended areas, longer morphologies, and more developed pseudopodia than did those in the NC group after 24 h. qRT-PCR revealed that the expression levels of the adhesion-related genes COL1A1, COL3A1, FN1, FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups (P<0.01). The expression of vinculin protein in the NM-1 group was the highest, and the number of focal adhesions was greatest in the NM-1 group (P<0.01). The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers (P<0.000 1).@*Conclusion@#The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion, proliferation, collagen fiber secretion and syntheses of HGFs, and electrochemical dealloying of Ti6Al4V with a grid diameter of approximately 30 nm obviously promoted HGF formation.

2.
Acta Pharmaceutica Sinica B ; (6): 998-1013, 2023.
Article in English | WPRIM | ID: wpr-971741

ABSTRACT

The skeletal system, which contains bones, joints, tendons, ligaments and other elements, plays a wide variety of roles in body shaping, support and movement, protection of internal organs, production of blood cells and regulation of calcium and phosphate metabolism. The prevalence of skeletal diseases and disorders, such as osteoporosis and bone fracture, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, increases with age, causing pain and loss of mobility and creating a huge social and economic burden globally. Focal adhesions (FAs) are macromolecular assemblies that are composed of the extracellular matrix (ECM), integrins, intracellular cytoskeleton and other proteins, including kindlin, talin, vinculin, paxillin, pinch, Src, focal adhesion kinase (FAK) and integrin-linked protein kinase (ILK) and other proteins. FA acts as a mechanical linkage connecting the ECM and cytoskeleton and plays a key role in mediating cell-environment communications and modulates important processes, such as cell attachment, spreading, migration, differentiation and mechanotransduction, in different cells in skeletal system by impacting distinct outside-in and inside-out signaling pathways. This review aims to integrate the up-to-date knowledge of the roles of FA proteins in the health and disease of skeletal system and focuses on the specific molecular mechanisms and underlying therapeutic targets for skeletal diseases.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 73-80, 2022.
Article in Chinese | WPRIM | ID: wpr-940422

ABSTRACT

ObjectiveTo study the possible molecular mechanism of baicalein (BAI)-mediated focal adhesion kinase (FAK) in the regulation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway to inhibit the proliferation and migration of gastric cancer HGC-27 cells. MethodThe gastric epithelial GES-1 cells and gastric cancer HGC-27 cells were respectively treated with BAI (0, 5, 15, 25, and 50 μmol·L-1) for 48 h, and then methyl thiazolyl tetrazolium (MTT) assay was adopted to detect effect of BAI on cell proliferation. Western blot (WB) was employed to detect the expression of FAK and the proteins related to epithelial-mesenchymal transition (EMT) and PI3K signaling pathway after intervention with different concentrations of BAI. The HGC-27 cells stably overexpressing FAK were constructed with lentivirus-mediated transfection technique, and the transfection of FAK was detected through WB and green fluorescent protein (GFP). The cells were divided into empty vector (NC) group, BAI group, FAK overexpression group, and BAI-treated FAK overexpression group, and cell proliferation activity was detected by MTT assay. The colony formation and cell migration were observed via colony formation assay and Transwell migration assay, respectively. The expression of proteins involved in EMT and PI3K signaling pathways were detected by Western blot. ResultCompared with the NC group, BAI (15, 25 and 50 μmol·L-1) inhibited the proliferation of HGC-27 cells in a dose-dependent manner (P<0.05, P<0.01) while did not affect that of GES-1 cells. BAI (5, 15 and 25 μmol·L-1) down-regulated the expression level of p-FAK (P<0.05, P<0.01). Compared with NC group, FAK overexpression group showed up-regulated expression level of FAK in HGC-27 cells. The HGC-27 cells in both NC group and FAK overexpression group had green fluorescence. Compared with NC group, BAI inhibited the growth, colony formation, and migration, while FAK overexpression promoted those of HGC-27 cells. The treatment of FAK overexpression group with BAI inhibited the enhancement of cell proliferation and migration (P<0.05). WB showed that compared with NC group, BAI (15, 25 μmol·L-1) significantly up-regulated the expression of E-cadherin protein and down-regulated that of Vimentin, Snail, p-PI3K, and p-Akt protein in HGC-27 cells (P<0.05, P<0.01). Compared with NC group, FAK overexpression group showed down-regulated expression of E-cadherin, up-regulated expression of p-FAK, Vimentin, and Snail, and increased ratios of p-FAK/FAK, p-PI3K/PI3K and p-Akt/Akt (P<0.05). This phenomenon would be reversed after BAI treatment. ConclusionBAI can affect the proliferation and migration of gastric cancer HGC-27 cells by mediating FAK to regulate PI3K/Akt signaling pathway.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 141-149, 2022.
Article in Chinese | WPRIM | ID: wpr-940298

ABSTRACT

ObjectiveTo explore the mechanism of Shenxiong glucose injection (SGI) in inhibiting hydrogen peroxide (H2O2)-induced oxidative damage in H9c2 cells by tandem mass tags (TMT)-labeled quantitative proteomics. MethodH9c2 cells cultured in vitro were exposed to H2O2 for inducing oxidative damage. The cell viability was measured by cell proliferation and cytotoxicity assay (MTS), followed by peptide fractionation by high performance liquid chromatography (HPLC) and protein expression detection in H9c2 cells by ultrahigh performance liquid chromatography-mass spectrometry. MaxQuant (v1.5.2.8) was utilized for data retrieval, and the high-resolution mass spectrometry was conducted to screen out differentially expressed proteins, which were then subjected to gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. The protein expression levels of perilipin 2 (Plin2) and tropomyosin 1 (Tpm1) in cells were measured by Western blot. ResultThe spectral analysis yielded 48 608 specific peptide fragments and 5 903 quantifiable proteins. Compared with the model group,the SGI group exhibited 82 differentially expressed proteins,of which 22 were up-regulated and 60 were down-regulated. GO analysis results showed that the differentially expressed proteins were mainly involved in biological processes such as programmed cell death regulation,regulation of cell proliferation,cardiovascular system development, and cell migration. As revealed by KEGG analysis, these proteins were mainly related to peroxisome proliferator-activated receptor (PPAR),focal adhesion,phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt),and Ras-related protein 1 (Rap1) pathways. Western blot results demonstrated that compared with the model group,SGI significantly increased the Plin2 protein expression and decreased the Tpm1 protein expression (P<0.01),consistent with the proteomics results. ConclusionSGI may inhibit cell apoptosis and antagonize H2O2-induced cell oxidative damage by regulating PPAR,focal adhesion,PI3K/Akt and Rap1 pathways,which should be further verified by subsequent experiments.

5.
Chinese Journal of Tissue Engineering Research ; (53): 165-171, 2021.
Article in Chinese | WPRIM | ID: wpr-847231

ABSTRACT

BACKGROUND: Focal adhesion kinase (FAK) is regarded as a bridge molecule of “biomaterial/scaffold,” “seed cell,” and “growth factor” in bone tissue engineering. Exploration on the role and mechanism of focal adhesion kinase in inducing osteogenic differentiation of related seed cells is particularly important for the development and application of bone tissue engineering. OBJECTIVE: To determine the role and mechanism of FAK in inducing osteogenic differentiation of immortalized mouse embryonic fibroblasts (iMEF). METHODS: Under the same induction conditions, the iMEF cells with (iMEFFAK+/+ cells) or without FAK knockout (iMEFFAK-/- cells), treated with or without PI3K/ AKT phosphorylation inhibitor LY294002 or ERK1/2 phosphorylation inhibitor U0126, were induced to differentiate into osteoblasts. The morphological changes of iMEFs (iMEFFAK+/+ and iMEFFAK-/-) at different induction periods were observed under a microscope. Runx2 protein levels and corresponding p-ERK1/2 and p-AKT levels were detected by western blot. RT-PCR technology was used to detect the transcription level of Runx2 gene. Finally, the induced iMEFs (iMEFFAK+/+ and iMEFFAK-/-) were stained with alizarin red staining for calcium nodules 3 weeks after osteogenesis induction. RESULTS AND CONCLUSION: The osteogenic effect of iMEFFAK-/- cells was lower than that of iMEFFAK+/+ cells under the same induction conditions. Both the expression levels of Runx2 and the osteogenic effect of iMEFFAK+/+ cells and iMEFFAK-/- cells treated with LY294002 decreased significantly compared with the control group. Both the expression levels of Runx2 and the osteogenic effect of iMEFFAK+/+ cells and iMEFFAK-/- cells treated with U0126 decreased significantly compared with the control group. To conclude, silencing FAK expression can inhibit osteogenic differentiation of mouse embryonic fibroblasts by reducing the levels of PI3K/AKT, serine/threonine protein kinase, and ERK1/2 phosphorylation levels.

6.
China Journal of Chinese Materia Medica ; (24): 3705-3711, 2021.
Article in Chinese | WPRIM | ID: wpr-888024

ABSTRACT

To observe the effect of Xinfeng Capsules on rheumatoid arthritis (RA) B lymphocytes,inflammatory mediators,FAK/CAPN/PI3K pathway,in order to explore the mechanism of Xinfeng Capsules in improving clinical symptoms of RA.Joint and systemic symptoms of RA patients were observed,and laboratory indicators[hemoglobin (HGB),platelet count (PLT),erythrocyte sedimentation (ESR),immunoglobulin (Ig) G,Ig A,Ig M,rheumatoid factor (RF),anti-cyclic citrulline antibody (CCP-AB),C-reactive protein (CRP)]were detected.ELISA was used to detect serum interleukin (IL)-1β,IL-10,IL-33,chemokine 5 (CCL5),and vascular endothelial growth factor (VEGF).CD3~-CD19~+B cells were measured by flow cytometry.Western blot was used to detect FAK,p-FAK,CAPN,PI3K protein.The results showed that Xinfeng Capsules could significantly alleviate RA joint and systemic symptoms and improve clinical efficacy.And Xinfeng Capsules could increase HGB,decrease PLT,CCP-AB,CRP,ESR index,upregulate IL-10 expression,and down-regulate IL-1β,IL-33,CCL5,VEGF,CD3~-CD19~+B cells,FAK,p-FAK,CAPN,PI3K expressions (P<0.01).Based on the above results,Xinfeng Capsules may reduce the expression of CD3~-CD19~+,regulate the balance of inflammatory cytokines and chemokines,inhibit abnormal activation of FAK/CAPN/PI3K pathway,and improve clinical symptoms of RA.


Subject(s)
Humans , Arthritis, Rheumatoid/drug therapy , B-Lymphocytes , Capsules , Drugs, Chinese Herbal , Phosphatidylinositol 3-Kinases , Vascular Endothelial Growth Factor A
7.
Acta Pharmaceutica Sinica ; (12): 1571-1579, 2021.
Article in Chinese | WPRIM | ID: wpr-881553

ABSTRACT

Local focal adhesion kinase (FAK) is a non-receptor intracellular tyrosine kinase that plays an important role in tumor initiation, development, metastasis and invasion, and is considered to be an important target for the development of antineoplastic drugs. It has both kinase-dependent and non-kinase-dependent scaffolding functions. However, traditional small molecular inhibitors can only inhibit its kinase-dependent activity, so it is difficult to target the kinase-independent scaffolding function. Therefore, there is an urgent need for novel strategies to enhance FAK targeting to lay the foundation for determining the druggability and discovery of FAK inhibitors. Proteolysis targeting chimera (PROTAC) is a new drug development strategy that can recruit E3 ligase to specifically ubiquitinylate target proteins for degradation through the proteasome system. The unique mechanism of action of the PROTAC system could be used to target and degrade the FAK protein, thus eliminating the scaffolding function of FAK. In this review, FAK protein, the signaling pathway, and small molecule inhibitors are briefly described, and the latest research progress in targeting the degradation of FAK using PROTAC technology is summarized.

8.
Int. j. morphol ; 38(1): 165-175, Feb. 2020. tab, graf
Article in English | LILACS | ID: biblio-1056416

ABSTRACT

An alternative hyper-ovulator inducer to replace clomiphene citrate (CC) is needed as it is unsuitable for women with polycystic ovarian syndrome and is associated with low pregnancy rates. Anastrozole is an effective hyper-ovulator inducer, but has not been well researched. In order to determine the effectiveness of anastrozole as a hyper-ovulator inducer and to an extent compare it with CC in similar situations, this study ascertained the effects of these drugs on the expression of the focal adhesion proteins, paxillin and FAK, which are uterine receptivity markers in the surface luminal uterine epithelial cells of day 1 and day 6 pregnant Wistar rats. The results show that paxillin is localized in focal adhesions at the base of the uterine epithelial cells at day 1 of pregnancy whereas at day 6, paxillin disassembles from the basal focal adhesions and localizes and increases its expression apically. FAK is faintly expressed at the basal aspect of the uterine epithelial cells while moderately expressed at the cell-to-cell contact at day 1 in all groups from where it disassembles and relocates apically and becomes more intensely expressed at day 6 of pregnancy in untreated and anastrozole treated rats. Although paxillin is localized apically at day 6, its expression is significantly down-regulated with CC treatment suggesting its interference with the implantation process. These findings seem to suggest that anastrozole could favor implantation.


Para reemplazar el citrato de clomifeno (CC) es necesario un inductor de hiperovulación alternativo, ya que no es adecuado para mujeres con síndrome de ovario poliquístico y está asociado con tasas bajas de embarazo. El anastrozol es un inductor eficaz del hiper-ovulador, pero no se ha investigado adecuadamente. Con el fin de determinar la efectividad del anastrozol como inductor del hiper-ovulador y, en cierta medida, compararlo con CC en situaciones similares, este estudio determinó los efectos de estos fármacos en la expresión de las proteínas de adhesión focal, paxillin y FAK, uterinas marcadores de receptividad en la superficie luminal de células uterinas epiteliales, del día 1 y día 6 en ratas Wistar preñadas. Los resultados muestran que la paxilina se localiza en adherencias focales en la base de las células epiteliales uterinas en el día 1 del embarazo, mientras que en el día 6, la paxilina se desmonta de las adherencias focales basales y localiza y aumenta su expresión apicalmente. FAK se expresa débilmente en el aspecto basal de las células epiteliales uterinas, mientras que se expresa moderadamente en el contacto de célula a célula en el día 1 en todos los grupos, donde se separa y se reubica apicalmente y se expresa con mayor intensidad el día 6 de la preñez, en pacientes no tratados y tratados. ratas tratadas con anastrozol. Aunque la paxillina se localiza apicalmente en el día 6, su expresión está significativamente disminuida con el tratamiento con CC, lo que sugiere su interferencia con el proceso de implantación. Estos hallazgos sugieren que el anastrozol podría favorecer el proceso de implantación.


Subject(s)
Animals , Female , Rats , Uterus/drug effects , Anastrozole/pharmacology , Ovulation/drug effects , Rats, Wistar , Focal Adhesions/drug effects , Epithelium/drug effects , Focal Adhesion Protein-Tyrosine Kinases/drug effects , Paxillin/drug effects , Real-Time Polymerase Chain Reaction , Microscopy, Fluorescence
9.
Mem. Inst. Oswaldo Cruz ; 115: e200143, 2020. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1154868

ABSTRACT

BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is capable of triggering different signaling pathways that modulate its internalisation in mammalian cells. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase protein, has been demonstrated as a mechanism of T. cruzi invasion in cardiomyocytes. Since the involved cell surface receptors are not yet known, we evaluated whether heparan sulfate proteoglycans (HSPG), a molecule involved in T. cruzi recognition and in the regulation of multiple signaling pathways, are able to trigger the FAK signaling pathway during T. cruzi invasion. METHODS To investigate the role of HSPG in the regulation of the FAK signaling pathway during trypomastigote entry, we performed heparan sulfate (HS) depletion from the cardiomyocyte surface by treatment with heparinase I or p-nitrophenyl-β-D-xylopyranoside (p-n-xyloside), which abolishes glycosaminoglycan (GAG) attachment to the proteoglycan core protein. Wild-type (CHO-k1) and GAG-deficient Chinese hamster ovary cells (CHO-745) were also used as an approach to evaluate the participation of the HSPG-FAK signaling pathway. FAK activation (FAK Tyr397) and spatial distribution were analysed by immunoblotting and indirect immunofluorescence, respectively. FINDINGS HS depletion from the cardiomyocyte surface inhibited FAK activation by T. cruzi. Cardiomyocyte treatment with heparinase I or p-n-xyloside resulted in 34% and 28% FAK phosphorylation level decreases, respectively. The experiments with the CHO cells corroborated the role of HSPG as a FAK activation mediator. T. cruzi infection did not stimulate FAK phosphorylation in CHO-745 cells, leading to a 36% reduction in parasite invasion. FAK inhibition due to the PF573228 treatment also impaired T. cruzi entry in CHO-k1 cells. MAIN CONCLUSION Jointly, our data demonstrate that HSPG is a key molecule in the FAK signaling pathway activation, regulating T. cruzi entry.

10.
J. appl. oral sci ; 28: e20190156, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1090765

ABSTRACT

Abstract Objective The present study aimed to investigate the participation of focal adhesion kinases (FAK) in interactions between osteoblastic cells and titanium (Ti) surfaces with three different topographies, namely, untreated (US), microstructured (MS), and nanostructured (NS). Methodology Osteoblasts harvested from the calvarial bones of 3-day-old rats were cultured on US, MS and NS discs in the presence of PF-573228 (FAK inhibitor) to evaluate osteoblastic differentiation. After 24 h, we evaluated osteoblast morphology and vinculin expression, and on day 10, the following parameters: gene expression of osteoblastic markers and integrin signaling components, FAK protein expression and alkaline phosphatase (ALP) activity. A smooth surface, porosities at the microscale level, and nanocavities were observed in US, MS, and NS, respectively. Results FAK inhibition decreased the number of filopodia in cells grown on US and MS compared with that in NS. FAK inhibition decreased the gene expression of Alp, bone sialoprotein, osteocalcin, and ALP activity in cells grown on all evaluated surfaces. FAK inhibition did not affect the gene expression of Fak, integrin alpha 1 ( Itga1 ) and integrin beta 1 ( Itgb1 ) in cells grown on MS, increased the gene expression of Fak in cells grown on NS, and increased the gene expression of Itga1 and Itgb1 in cells grown on US and NS. Moreover, FAK protein expression decreased in cells cultured on US but increased in cells cultured on MS and NS after FAK inhibition; no difference in the expression of vinculin was observed among cells grown on all surfaces. Conclusions Our data demonstrate the relevance of FAK in the interactions between osteoblastic cells and Ti surfaces regardless of surface topography. Nanotopography positively regulated FAK expression and integrin signaling pathway components during osteoblast differentiation. In this context, the development of Ti surfaces with the ability to upregulate FAK activity could positively impact the process of implant osseointegration.


Subject(s)
Animals , Osteoblasts/drug effects , Sulfones/pharmacology , Titanium/chemistry , Quinolones/pharmacology , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Osteoblasts/physiology , Sulfones/chemistry , Surface Properties , Microscopy, Electron, Scanning , Signal Transduction , Gene Expression , Integrins/analysis , Cell Differentiation/drug effects , Cells, Cultured , Osseointegration/drug effects , Rats, Wistar , Quinolones/chemistry , Cell Proliferation/drug effects , Focal Adhesion Protein-Tyrosine Kinases/analysis , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Real-Time Polymerase Chain Reaction
11.
Chinese Journal of Tissue Engineering Research ; (53): 2535-2540, 2020.
Article in Chinese | WPRIM | ID: wpr-847614

ABSTRACT

BACKGROUND: The compounding of RGD polypeptide on the surface of the material can induce the expression of osteoblast integrin gene, promote the adhesion of osteoblasts to the surface of biomaterials and differentiate into mature cells, and promote the formation of new bone. OBJECTIVE: To analyze the effect of domestic porous tantalum modified by RGD polypeptide on integrin/focal adhesion kinase signaling pathway in MG63 cells. METHODS: Porous tantalum material modified by RGD polypeptide was prepared. MG63 cells were inoculated on the surface of porous tantalum and porous tantalum materials modified with RGD polypeptide. MG63 cells cultured alone were used as the blank group. When cultured for 1, 3, 5, and 7 days, the cell proliferation was detected by the CCK-8 method. At 1, 3, and 5 days, the cell growth status was observed under an inverted microscope. At 3, 5 days of culture, cell adhesion was observed with scanning electron microscope. At 5 days of culture, RT-PCR and western blot assay were used to detect type I collagen and integrin β1 and focal adhesion kinase expression. RESULTS AND CONCLUSION: (1) The cell proliferation of the RGD modified group cultured at 3, 5, and 7 days was faster than that of the porous tantalum group and the blank group (P 0.05). (2) Observation by an inverted phase contrast microscope showed that the cells of the porous tantalum group and the RGD modified group were attached to the edge of the material when cultured for 1 day, and the number of cells gradually increased with the extension of the culture time. The number and density of cells in the RGD modified group were better than that of the porous tantalum group. (3) Observation by scanning electron microscope showed that cells adhered to the surface of the porous tantalum group and RGD modified group after 3 days of culture. The cells adhered to the material pore walls and pores, and protruded pseudopods into the pores. When cultured for 5 days, the cells secreted a large amount of extracellular matrix, and the cells were connected to each other through the matrix and gradually covered the surface of the material. The cell growth state, matrix secretion and cell coverage area of the RGD modified group were better than those of the porous tantalum group. (4) Western blot detection results showed that the expressions of type I collagen and integrin β1 protein in the RGD modified group were higher than those in the porous tantalum group and the blank group (P < 0.05). The expression levels of type I collagen, integrin β1, and focal adhesion kinase protein in the porous tantalum group were higher than those in the blank group (P < 0.05). (5) RT-PCR detection showed that the expressions of type I collagen, integrin β1, and focal adhesion kinase mRNA in the RGD modified group were higher than those of the porous tantalum group and the blank group (P < 0.05), and the expression of the porous tantalum group was higher than that of the blank group (P < 0.05). (6) The results showed that porous tantalum modified with RGD polypeptide can up-regulate the expression of type I collagen and integrin β1 on the cell membrane, activate the integrin/focal adhesion kinase signaling pathway, and promote cell adhesion and growth.

12.
West China Journal of Stomatology ; (6): 17-22, 2020.
Article in Chinese | WPRIM | ID: wpr-781351

ABSTRACT

OBJECTIVE@#To study the effect of the focal adhesion kinase inhibitor TAE226 on epithelial-mesenchymal transition (EMT) in human oral squamous cell carcinoma (OSCC) cell line.@*METHODS@#HSC-3 and HSC-4 cells were cultured with TAE226 under different concentrations (0, 1, 5, and 10 μmol·L⁻¹) for 24, 48, and 72 h. Real-time quantitative polymerase chain reaction was performed to detect the mRNA expressions of E-cadherin and Vimentin. The protein expressions of E-cadherin and Vimentin were determined by Western blot assay after 48 h of TAE226 treatment.@*RESULTS@#Real-time quantitative polymerase chain reaction showed that increasing the TAE226 dose and reaction time resulted in increased and decreased E-cadherin and Vimentin mRNA expressions, respectively (P<0.05). Western blot assays showed that increasing the TAE226 dose resulted in increased and decreased E-cadherin and Vimentin protein expressions, respectively (P<0.05).@*CONCLUSIONS@#TAE226, which is expected to be an effective drug for OSCC treatment, can effectively inhibit the EMT of the OSCC cell line.


Subject(s)
Humans , Cadherins , Carcinoma, Squamous Cell , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Focal Adhesion Protein-Tyrosine Kinases , Morpholines , Mouth Neoplasms , Vimentin
13.
Article | IMSEAR | ID: sea-210422

ABSTRACT

The different malignancy advancing systems related with focal adhesion kinase (FAK) can be attentive in theprogression of colorectal cancer. By inhibiting the growth mechanism of mixture of 5-Fluorouracil (5-FU) andearthworm therapy could enhance the affectability of malignant growth cells. The objective of this research was toexplore the antiproliferative activity of mixed coelomic fluid cancer medicines produced from Lumbricus rubellus.Colorectal cancer was actuated in mice by injected HT-29 cells in the caecum of mice, and then 5% dextran sodiumsulfate were given by the drinking water. To investigate the effect of combination treatment, we divided of fivetreatment groups: group 1 was untreated (vehicle), groups 2–5 were given by 5-FU. Groups 3–5 were given by acombination of 5-FU (50 μg/g BW) and coelomic fluid (50, 100, and 200 μg/g BW), respectively. The administratedof coelomic fluid was started from the 4th weeks. Mice were sacrificed at the end of 8 weeks and colon tissue wasisolated, then assessed using Flowcytometry and immunofluorescent. These findings revealed that the mixture of 5FUand coelomic fluid components inhibits growth considerably, Interleukin-1β (IL-1β) and FAK compare with 5-FUonly group (p < 0.001; p < 0.05; and p < 0.001). Treatment used coelomic fluid at a dose of 200 μg/g BW decreasedFAK expression. The combination of 5-FU and coelomic fluid at a dose of 200 μg/g BW decreased the percentage ofIL-1β (p < 0.05).

14.
Mem. Inst. Oswaldo Cruz ; 114: e180593, 2019. graf
Article in English | LILACS | ID: biblio-1020079

ABSTRACT

BACKGROUND Cardiac physiology depends on coupling and electrical and mechanical coordination through the intercalated disc. Focal adhesions offer mechanical support and signal transduction events during heart contraction-relaxation processes. Talin links integrins to the actin cytoskeleton and serves as a scaffold for the recruitment of other proteins, such as paxillin in focal adhesion formation and regulation. Chagasic cardiomyopathy is caused by infection by Trypanosoma cruzi and is a debilitating condition comprising extensive fibrosis, inflammation, cardiac hypertrophy and electrical alterations that culminate in heart failure. OBJECTIVES Since mechanotransduction coordinates heart function, we evaluated the underlying mechanism implicated in the mechanical changes, focusing especially in mechanosensitive proteins and related signalling pathways during infection of cardiac cells by T. cruzi. METHODS We investigated the effect of T. cruzi infection on the expression and distribution of talin/paxillin and associated proteins in mouse cardiomyocytes in vitro by western blotting, immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). FINDINGS Talin and paxillin spatial distribution in T. cruzi-infected cardiomyocytes in vitro were altered associated with a downregulation of these proteins and mRNAs levels at 72 h post-infection (hpi). Additionally, we observed an increase in the activation of the focal adhesion kinase (FAK) concomitant with increase in β-1-integrin at 24 hpi. Finally, we detected a decrease in the activation of FAK at 72 hpi in T. cruzi-infected cultures. MAIN CONCLUSION The results suggest that these changes may contribute to the mechanotransduction disturbance evidenced in chagasic cardiomyopathy.


Subject(s)
Animals , Mice , Trypanosoma cruzi/physiology , Chagas Cardiomyopathy/metabolism , Myocytes, Cardiac/parasitology , Mechanotransduction, Cellular/genetics , Blotting, Western , Polymerase Chain Reaction , Fluorescent Antibody Technique , Paxillin/metabolism
15.
Chinese Journal of Pathology ; (12): 102-107, 2019.
Article in Chinese | WPRIM | ID: wpr-810446

ABSTRACT

Objective@#To investigate PLOD2 expression in esophageal squamous cell carcinoma, and to explore the potential mechanism by which PLOD2 promotes tumor metastasis.@*Methods@#The expression of PLOD2 in 60 cases of esophageal squamous cell carcinoma (the patients were collected at the first Affiliated Hospital of Xinxiang Medical University, from January 2016 to December 2017) was investigated by immunohistochemistry. Fibrillar collagen formation and collagen deposition were detected by picrosirius red staining. Correlation of PLOD2 expression with clinical pathologic features of the patients was performed using χ2 test and Kaplan-Meier analysis. After EC-109 cells were transfected with LV-vector and LV-over/PLOD2, the expression of PLOD2 was detected by real time PCR and the impact of POLD2 on invasion in EC-109 cells was determined by transwell migration and invasion assays. The expression of PLOD2/AKT epithelial-to-mesenchymal transition signal pathway related proteins was detected by Western blot.@*Results@#The expression level of PLOD2 in esophageal squamous cell carcinoma was 81.7% (49/60 cases),higher than their paired noncancerous tissues(8.3%, 5/60; P<0.01), and correlated significantly with tumor depth of invasion and nodal metastasis (P<0.01). Picrosirius red staining showed that collagen deposition was increased and the degree of fibrillar organization was enhanced in carcinoma tissues that had higher PLOD2 expression. Transwell migration and invasion assays showed that PLOD2 significantly promoted the migration and invasion ability of EC-109 cells. Western blot showed that PLOD2 significantly increased the expression levels of p-FAK, p-AKT and vimentin in EC-109 cells.@*Conclusions@#Esophageal squamous cell carcinoma has a high expression of PLOD2 that correlates with tumor invasion and lymph node metastasis. PLOD2 promotes invasion and metastasis of esophageal squamous cell carcinoma through epithelial-to-mesenchymal transition via FAK/AKT signal pathway.

16.
Acta Pharmaceutica Sinica B ; (6): 1163-1173, 2019.
Article in English | WPRIM | ID: wpr-815862

ABSTRACT

Collectively migrating tumor cells have been recently implicated in enhanced metastasis of epithelial malignancies. In oral squamous cell carcinoma (OSCC), v integrin is a crucial mediator of multicellular clustering and collective movement ; however, its contribution to metastatic spread remains to be addressed. According to the emerging therapeutic concept, dissociation of tumor clusters into single cells could significantly suppress metastasis-seeding ability of carcinomas. This study aimed to investigate the anti-OSCC potential of novel endostatin-derived polypeptide PEP06 as a cluster-dissociating therapeutic agent . Firstly, we found marked enrichment of v integrin in collectively invading multicellular clusters in human OSCCs. Our study revealed that metastatic progression of OSCC was associated with augmented immunostaining of v integrin in cancerous lesions. Following PEP06 treatment, cell clustering on fibronectin, migration, multicellular aggregation, anchorage-independent survival and colony formation of OSCC were significantly inhibited. Moreover, PEP06 suppressed v integrin/FAK/Src signaling in OSCC cells. PEP06-induced loss of active Src and E-cadherin from cell-cell contacts contributed to diminished collective migration of OSCC . Overall, these results suggest that PEP06 polypeptide 30 inhibiting v integrin/FAK/Src signaling and disrupting E-cadherin-based intercellular junctions possesses anti-metastatic potential in OSCC by acting as a cluster-dissociating therapeutic agent.

17.
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery ; (12): 379-384, 2019.
Article in Chinese | WPRIM | ID: wpr-732647

ABSTRACT

@#Objective To explore the changes of focal adhesion kinase (FAK) in the fibrotic atrium of patients with valvular atrial fibrillation and explore its downstream signaling pathways. Methods A total of 45 patients with mitral valve disease were included in this study and were divided into a valvular atrial fibrillation group (VAF, ≥6 months, 25 patients) and a sinus rhythm group (SR, 20 patients) based on having atrial fibrillation or not. The atrial appendage tissue was obtained during the operation , histopathological examination and Western blotting were performed. The degree of atrial fibrosis and changes in FAK and its downstream pathways in fibrotic myocardium were observed. Results This study revealed a higher degree of atrial fibrosis in valvular atrial fibrillation and disordered cell arrangement. Expression of fibroblast differentiation marker alpha smooth muscle actin (α-SMA) was significantly increased in atrial fibrillation, and the expression of FAK and downstream AKT/S6K pathway proteins was up-regulated, while the other signal was observed, there was no significant change in ERK1/2 signaling pathway. Conclusion Atrial fibrosis in valvular atrial fibrillation is an important feature of atrial structural remodeling. We found overproduction of collagen fibers disrupted the continuity of atrial myocytes, leading to abnormal conduction and providing a matrix environment for the development of atrial fibrillation. The expression of focal adhesion kinase and downstream AKT/S6K signaling pathway in fibrotic myocardium may be involved in the process of atrial fibrosis, providing a basis for the study of its mechanism.

18.
China Journal of Chinese Materia Medica ; (24): 119-124, 2019.
Article in Chinese | WPRIM | ID: wpr-771508

ABSTRACT

To explore the mechanism of β-carboline alkaloids inhibiting the migration and invasion of SGC-7901 cells and its correlation with FAK gene expression,CCK-8 method was used to determine the inhibitory rate of β-carboline alkaloids on the proliferation of gastric cancer SGC-7901 cells under different concentrations.The effect of β-carboline alkaloids on the migration and invasion of SGC-7901 cells was used by Transwell compartment.Detection of mRNA and protein expression of FAK genes were used by qRT-PCR and Western blot.Then si-FAK-1051 recombinant plasmid was transfected into SGC-7901 cells.FAK gene silencing effect was identified by qRT-PCR and Western blot technique again.Finally,the effects of FAK gene silencing on proliferation and migration of gastric cancer SGC-7901 cells were detected by CCK-8 kit and Transwell chamber assay respectively.With the increase of the concentration ofβ-carboline alkaloids,the inhibitory rate of SGC-7901 cells in human gastric cancer cells increased gradually,with IC5013.364 mg·L-1.The number of SGC-7901 cells of Transwell compartment in the positive experimental group(5-FU,5 mg·L-1) and the β-carboline alkaloids group decreased significantly(P<0.01) and the number of SGC-7901 cells in the β-carboline alkaloids group was significantly lower than that in the positive experimental group(P<0.01).Compared with the blank control group,the mRNA and protein expression level of FAK genes in the positive experimental group was significantly lower than that in the experimental group of β-carboline alkaloids(P<0.05).After transfection of si-FAK-1051 into gastric cancer SGC-7901 cells,the expression of mRNA and protein of FAK gene was significantly down regulated(P<0.05).SGC-7901 cell proliferation and cell migration ability also decreased significantly(P<0.05).β-carboline alkaloids are more effective than 5-FU in inhibiting migration and invasion of gastric cancer SGC-7901 cells,and the mechanism may be related to the inhibition of mRNA and protein expression of FAK gene by β-carboline alkaloids.


Subject(s)
Humans , Alkaloids , Pharmacology , Carbolines , Pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Focal Adhesion Kinase 1 , Genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Neoplasm Invasiveness , Stomach Neoplasms , Drug Therapy , Pathology
19.
Chinese Journal of Clinical Laboratory Science ; (12): 401-406, 2019.
Article in Chinese | WPRIM | ID: wpr-821738

ABSTRACT

Objective@#To investigate the effects of β2 glycoprotein Ⅰ/anti-β2 glycoprotein Ⅰ complex (β2/aβ2) on oxidized low density lipoprotein (oxLDL)-mediated lipid accumulation and focal adhesion kinase (FAK) activation in THP-1 macrophage, as well as the role of Toll-like receptor 4 (TLR4) during the process. @*Methods@#THP-1 cells were differentiated into THP-1 macrophage by PMA (100 ng/mL). THP-1 macrophages were treated with RPMI 1640 medium, oxLDL, oxLDL+β2/aβ2 or oxLDL+lipopolysaccharide (LPS). The mRNA expressions of lipid transportation molecules, ACAT1, ABCA1 and ABCG1 were detected by RT-qPCR. Intracellular total cholesterol (TC) and free cholesterol (FC) in THP-1 macrophages were evaluated by Trinder assay, then the content and proportion of intracellular cholesteryl ester (CE) were calculated. The expression and phosphorylation of FAK were detected by immune fluorescence, RT-qPCR and western blot. To evaluate the role of TLR4, THP-1 macrophages were pre-treated with or without TLR4 inhibitor TAK-242 (1 μg/mL). @*Results@#β2/aβ2 treatment significantly inhibited oxLDL-mediated lipid accumulation and FAK expression and phosphorylation in THP-1 macrophages, which could be reversed by TLR4 blockage. @*Conclusion@#β2/aβ2 inhibits the oxLDL-mediated lipid accumulation and FAK activation of THP-1 macrophage, which is related to the function of TLR4.

20.
Int. j. morphol ; 36(1): 345-357, Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-893233

ABSTRACT

SUMMARY: An alternative superovulator to replace clomiphene citrate is needed as clomiphene citrate is associated with low pregnancy rates. Anastrozole is an effective superovulator, but it has not been well researched. In order to determine the effectiveness of anastrozole as a superovulator and to compare it with clomiphene citrate in similar situations, this study ascertained the effects of these drugs on the expression of the focal adhesion proteins, vinculin and integrin β5, which are uterine receptivity markers, in the uterine epithelial cells of day 1 and day 6 pregnant Wistar rats. The results show that vinculin and integrin β5 are co-localized at the base of the uterine epithelium at day 1 of pregnancy whereas at day 6, they disassemble from the basal focal adhesions and co-localize and significantly increase their expression apically (p≤0.0001). Moreover, there is a significant difference in the protein expression levels of vinculin and integrin b5 in uterine luminal epithelial cells between untreated (control) and chlomiphene citrate treated rats (p≤0.0001), anastrozole and chlomiphene citrate treated rats at day 6 (p≤0.0001) suggesting the interpretation that anastrozole seems to enhance their expression in order to perhaps assist in the implantation process of the blastocyst. The immunofluorescence experiments agree with the vinculin and integrin β5 gene expression findings in which at day 6 of pregnancy, vinculin and integrin β5 gene expression are significantly upregulated in uterine luminal epithelial cells in the anastrozole treated group relative to the calibrator sample (p≤0.0001). These findings suggest that anastrozole is implantation friendly.


RESUMEN: Es necesario un superovulador alternativo para reemplazar el citrato de clomifeno, debido a que está asociado con bajas tasas de preñez. El anastrozol es un superovulador eficaz, sin embargo es poca su investigación. Con el fin de determinar la efectividad del anastrozol como superovulador y compararlo con citrato de clomifeno en situaciones similares, se determinaron los efectos de estos fármacos sobre la expresión de las proteínas de adhesión focal, vinculina e integrina β5, en marcadores de receptividad uterina en días 1 y 6, en las células epiteliales uterinas de ratas Wistar preñadas. Los resultados muestran que la vinculina y la integrina β5 se co-localizan en la base del epitelio uterino al día 1 de la gravidez mientras que al día 6 se desmontan de las adherencias focales basales, co-localizan y aumentan significativamente su expresión apicalmente (p≤0.0001). Además, existe una diferencia significativa en los niveles de expresión de proteína de vinculina e integrina β5 en células epiteliales luminales uterinas entre ratas no tratadas (control) y tratadas con citrato declomifeno (p≤0.0001), ratas tratadas con anastrozol y citrato declomifeno al día 6 (p≤0,0001) sugiriendo la interpretación de que el anastrozol parece mejorar su expresión con el fin de ayudar en el proceso de implantación del blastocisto. Los experimentos de inmunofluorescencia coinciden con los resultados de la expresión de los genes vinculina e integrina β5 en los cuales al día 6 de la preñez, la vinculina y la integrina β5 están significativamente reguladas en células epiteliales luminales uterinas en el grupo tratado con anastrozol con respecto a la muestra del calibrador (p<0,0001). Estos hallazgos sugieren que el anastrozol es favorable para la implantación.


Subject(s)
Animals , Female , Pregnancy , Rats , Integrins/drug effects , Nitriles/pharmacology , Triazoles/pharmacology , Uterus/drug effects , Vinculin/drug effects , Epithelial Cells/drug effects , Focal Adhesions/drug effects , Integrins/genetics , Integrins/physiology , Microscopy, Confocal , Microscopy, Fluorescence , Rats, Wistar , Real-Time Polymerase Chain Reaction , Vinculin/genetics , Vinculin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL